direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D5×C22×C12, C60⋊13C23, C30.70C24, C5⋊2(C23×C12), C15⋊9(C23×C4), C30⋊9(C22×C4), C20⋊3(C22×C6), (C2×C60)⋊51C22, (C22×C20)⋊14C6, (C22×C60)⋊22C2, C10⋊2(C22×C12), C10.2(C23×C6), (C23×D5).7C6, C6.70(C23×D5), C23.39(C6×D5), Dic5⋊3(C22×C6), (C6×D5).74C23, (C2×C30).380C23, (C22×Dic5)⋊13C6, (C6×Dic5)⋊39C22, (C3×Dic5)⋊11C23, D10.15(C22×C6), (C22×C6).136D10, (C22×C30).165C22, (C2×C20)⋊14(C2×C6), (C2×C30)⋊36(C2×C4), C2.1(D5×C22×C6), (C2×C6×Dic5)⋊21C2, (C2×C10)⋊13(C2×C12), C22.29(D5×C2×C6), (D5×C22×C6).10C2, (C2×Dic5)⋊12(C2×C6), (D5×C2×C6).156C22, (C22×C10).52(C2×C6), (C2×C10).63(C22×C6), (C22×D5).45(C2×C6), (C2×C6).376(C22×D5), SmallGroup(480,1136)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — D5×C22×C12 |
Subgroups: 1200 in 472 conjugacy classes, 290 normal (22 characteristic)
C1, C2, C2 [×6], C2 [×8], C3, C4 [×4], C4 [×4], C22 [×7], C22 [×28], C5, C6, C6 [×6], C6 [×8], C2×C4 [×6], C2×C4 [×22], C23, C23 [×14], D5 [×8], C10, C10 [×6], C12 [×4], C12 [×4], C2×C6 [×7], C2×C6 [×28], C15, C22×C4, C22×C4 [×13], C24, Dic5 [×4], C20 [×4], D10 [×28], C2×C10 [×7], C2×C12 [×6], C2×C12 [×22], C22×C6, C22×C6 [×14], C3×D5 [×8], C30, C30 [×6], C23×C4, C4×D5 [×16], C2×Dic5 [×6], C2×C20 [×6], C22×D5 [×14], C22×C10, C22×C12, C22×C12 [×13], C23×C6, C3×Dic5 [×4], C60 [×4], C6×D5 [×28], C2×C30 [×7], C2×C4×D5 [×12], C22×Dic5, C22×C20, C23×D5, C23×C12, D5×C12 [×16], C6×Dic5 [×6], C2×C60 [×6], D5×C2×C6 [×14], C22×C30, D5×C22×C4, D5×C2×C12 [×12], C2×C6×Dic5, C22×C60, D5×C22×C6, D5×C22×C12
Quotients:
C1, C2 [×15], C3, C4 [×8], C22 [×35], C6 [×15], C2×C4 [×28], C23 [×15], D5, C12 [×8], C2×C6 [×35], C22×C4 [×14], C24, D10 [×7], C2×C12 [×28], C22×C6 [×15], C3×D5, C23×C4, C4×D5 [×4], C22×D5 [×7], C22×C12 [×14], C23×C6, C6×D5 [×7], C2×C4×D5 [×6], C23×D5, C23×C12, D5×C12 [×4], D5×C2×C6 [×7], D5×C22×C4, D5×C2×C12 [×6], D5×C22×C6, D5×C22×C12
Generators and relations
G = < a,b,c,d,e | a2=b2=c12=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 137)(2 138)(3 139)(4 140)(5 141)(6 142)(7 143)(8 144)(9 133)(10 134)(11 135)(12 136)(13 200)(14 201)(15 202)(16 203)(17 204)(18 193)(19 194)(20 195)(21 196)(22 197)(23 198)(24 199)(25 153)(26 154)(27 155)(28 156)(29 145)(30 146)(31 147)(32 148)(33 149)(34 150)(35 151)(36 152)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 157)(50 158)(51 159)(52 160)(53 161)(54 162)(55 163)(56 164)(57 165)(58 166)(59 167)(60 168)(61 227)(62 228)(63 217)(64 218)(65 219)(66 220)(67 221)(68 222)(69 223)(70 224)(71 225)(72 226)(73 216)(74 205)(75 206)(76 207)(77 208)(78 209)(79 210)(80 211)(81 212)(82 213)(83 214)(84 215)(85 236)(86 237)(87 238)(88 239)(89 240)(90 229)(91 230)(92 231)(93 232)(94 233)(95 234)(96 235)(97 188)(98 189)(99 190)(100 191)(101 192)(102 181)(103 182)(104 183)(105 184)(106 185)(107 186)(108 187)(109 174)(110 175)(111 176)(112 177)(113 178)(114 179)(115 180)(116 169)(117 170)(118 171)(119 172)(120 173)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 61)(10 62)(11 63)(12 64)(13 129)(14 130)(15 131)(16 132)(17 121)(18 122)(19 123)(20 124)(21 125)(22 126)(23 127)(24 128)(25 176)(26 177)(27 178)(28 179)(29 180)(30 169)(31 170)(32 171)(33 172)(34 173)(35 174)(36 175)(37 204)(38 193)(39 194)(40 195)(41 196)(42 197)(43 198)(44 199)(45 200)(46 201)(47 202)(48 203)(49 105)(50 106)(51 107)(52 108)(53 97)(54 98)(55 99)(56 100)(57 101)(58 102)(59 103)(60 104)(73 237)(74 238)(75 239)(76 240)(77 229)(78 230)(79 231)(80 232)(81 233)(82 234)(83 235)(84 236)(85 215)(86 216)(87 205)(88 206)(89 207)(90 208)(91 209)(92 210)(93 211)(94 212)(95 213)(96 214)(109 151)(110 152)(111 153)(112 154)(113 155)(114 156)(115 145)(116 146)(117 147)(118 148)(119 149)(120 150)(133 227)(134 228)(135 217)(136 218)(137 219)(138 220)(139 221)(140 222)(141 223)(142 224)(143 225)(144 226)(157 184)(158 185)(159 186)(160 187)(161 188)(162 189)(163 190)(164 191)(165 192)(166 181)(167 182)(168 183)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200 201 202 203 204)(205 206 207 208 209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224 225 226 227 228)(229 230 231 232 233 234 235 236 237 238 239 240)
(1 74 180 193 52)(2 75 169 194 53)(3 76 170 195 54)(4 77 171 196 55)(5 78 172 197 56)(6 79 173 198 57)(7 80 174 199 58)(8 81 175 200 59)(9 82 176 201 60)(10 83 177 202 49)(11 84 178 203 50)(12 73 179 204 51)(13 167 144 212 110)(14 168 133 213 111)(15 157 134 214 112)(16 158 135 215 113)(17 159 136 216 114)(18 160 137 205 115)(19 161 138 206 116)(20 162 139 207 117)(21 163 140 208 118)(22 164 141 209 119)(23 165 142 210 120)(24 166 143 211 109)(25 46 104 61 234)(26 47 105 62 235)(27 48 106 63 236)(28 37 107 64 237)(29 38 108 65 238)(30 39 97 66 239)(31 40 98 67 240)(32 41 99 68 229)(33 42 100 69 230)(34 43 101 70 231)(35 44 102 71 232)(36 45 103 72 233)(85 155 132 185 217)(86 156 121 186 218)(87 145 122 187 219)(88 146 123 188 220)(89 147 124 189 221)(90 148 125 190 222)(91 149 126 191 223)(92 150 127 192 224)(93 151 128 181 225)(94 152 129 182 226)(95 153 130 183 227)(96 154 131 184 228)
(1 187)(2 188)(3 189)(4 190)(5 191)(6 192)(7 181)(8 182)(9 183)(10 184)(11 185)(12 186)(13 233)(14 234)(15 235)(16 236)(17 237)(18 238)(19 239)(20 240)(21 229)(22 230)(23 231)(24 232)(25 111)(26 112)(27 113)(28 114)(29 115)(30 116)(31 117)(32 118)(33 119)(34 120)(35 109)(36 110)(37 216)(38 205)(39 206)(40 207)(41 208)(42 209)(43 210)(44 211)(45 212)(46 213)(47 214)(48 215)(49 228)(50 217)(51 218)(52 219)(53 220)(54 221)(55 222)(56 223)(57 224)(58 225)(59 226)(60 227)(61 168)(62 157)(63 158)(64 159)(65 160)(66 161)(67 162)(68 163)(69 164)(70 165)(71 166)(72 167)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 127)(80 128)(81 129)(82 130)(83 131)(84 132)(85 203)(86 204)(87 193)(88 194)(89 195)(90 196)(91 197)(92 198)(93 199)(94 200)(95 201)(96 202)(97 138)(98 139)(99 140)(100 141)(101 142)(102 143)(103 144)(104 133)(105 134)(106 135)(107 136)(108 137)(145 180)(146 169)(147 170)(148 171)(149 172)(150 173)(151 174)(152 175)(153 176)(154 177)(155 178)(156 179)
G:=sub<Sym(240)| (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,133)(10,134)(11,135)(12,136)(13,200)(14,201)(15,202)(16,203)(17,204)(18,193)(19,194)(20,195)(21,196)(22,197)(23,198)(24,199)(25,153)(26,154)(27,155)(28,156)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,151)(36,152)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,157)(50,158)(51,159)(52,160)(53,161)(54,162)(55,163)(56,164)(57,165)(58,166)(59,167)(60,168)(61,227)(62,228)(63,217)(64,218)(65,219)(66,220)(67,221)(68,222)(69,223)(70,224)(71,225)(72,226)(73,216)(74,205)(75,206)(76,207)(77,208)(78,209)(79,210)(80,211)(81,212)(82,213)(83,214)(84,215)(85,236)(86,237)(87,238)(88,239)(89,240)(90,229)(91,230)(92,231)(93,232)(94,233)(95,234)(96,235)(97,188)(98,189)(99,190)(100,191)(101,192)(102,181)(103,182)(104,183)(105,184)(106,185)(107,186)(108,187)(109,174)(110,175)(111,176)(112,177)(113,178)(114,179)(115,180)(116,169)(117,170)(118,171)(119,172)(120,173), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,61)(10,62)(11,63)(12,64)(13,129)(14,130)(15,131)(16,132)(17,121)(18,122)(19,123)(20,124)(21,125)(22,126)(23,127)(24,128)(25,176)(26,177)(27,178)(28,179)(29,180)(30,169)(31,170)(32,171)(33,172)(34,173)(35,174)(36,175)(37,204)(38,193)(39,194)(40,195)(41,196)(42,197)(43,198)(44,199)(45,200)(46,201)(47,202)(48,203)(49,105)(50,106)(51,107)(52,108)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(73,237)(74,238)(75,239)(76,240)(77,229)(78,230)(79,231)(80,232)(81,233)(82,234)(83,235)(84,236)(85,215)(86,216)(87,205)(88,206)(89,207)(90,208)(91,209)(92,210)(93,211)(94,212)(95,213)(96,214)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150)(133,227)(134,228)(135,217)(136,218)(137,219)(138,220)(139,221)(140,222)(141,223)(142,224)(143,225)(144,226)(157,184)(158,185)(159,186)(160,187)(161,188)(162,189)(163,190)(164,191)(165,192)(166,181)(167,182)(168,183), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200,201,202,203,204)(205,206,207,208,209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224,225,226,227,228)(229,230,231,232,233,234,235,236,237,238,239,240), (1,74,180,193,52)(2,75,169,194,53)(3,76,170,195,54)(4,77,171,196,55)(5,78,172,197,56)(6,79,173,198,57)(7,80,174,199,58)(8,81,175,200,59)(9,82,176,201,60)(10,83,177,202,49)(11,84,178,203,50)(12,73,179,204,51)(13,167,144,212,110)(14,168,133,213,111)(15,157,134,214,112)(16,158,135,215,113)(17,159,136,216,114)(18,160,137,205,115)(19,161,138,206,116)(20,162,139,207,117)(21,163,140,208,118)(22,164,141,209,119)(23,165,142,210,120)(24,166,143,211,109)(25,46,104,61,234)(26,47,105,62,235)(27,48,106,63,236)(28,37,107,64,237)(29,38,108,65,238)(30,39,97,66,239)(31,40,98,67,240)(32,41,99,68,229)(33,42,100,69,230)(34,43,101,70,231)(35,44,102,71,232)(36,45,103,72,233)(85,155,132,185,217)(86,156,121,186,218)(87,145,122,187,219)(88,146,123,188,220)(89,147,124,189,221)(90,148,125,190,222)(91,149,126,191,223)(92,150,127,192,224)(93,151,128,181,225)(94,152,129,182,226)(95,153,130,183,227)(96,154,131,184,228), (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,181)(8,182)(9,183)(10,184)(11,185)(12,186)(13,233)(14,234)(15,235)(16,236)(17,237)(18,238)(19,239)(20,240)(21,229)(22,230)(23,231)(24,232)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,109)(36,110)(37,216)(38,205)(39,206)(40,207)(41,208)(42,209)(43,210)(44,211)(45,212)(46,213)(47,214)(48,215)(49,228)(50,217)(51,218)(52,219)(53,220)(54,221)(55,222)(56,223)(57,224)(58,225)(59,226)(60,227)(61,168)(62,157)(63,158)(64,159)(65,160)(66,161)(67,162)(68,163)(69,164)(70,165)(71,166)(72,167)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,203)(86,204)(87,193)(88,194)(89,195)(90,196)(91,197)(92,198)(93,199)(94,200)(95,201)(96,202)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,133)(105,134)(106,135)(107,136)(108,137)(145,180)(146,169)(147,170)(148,171)(149,172)(150,173)(151,174)(152,175)(153,176)(154,177)(155,178)(156,179)>;
G:=Group( (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,133)(10,134)(11,135)(12,136)(13,200)(14,201)(15,202)(16,203)(17,204)(18,193)(19,194)(20,195)(21,196)(22,197)(23,198)(24,199)(25,153)(26,154)(27,155)(28,156)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,151)(36,152)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,157)(50,158)(51,159)(52,160)(53,161)(54,162)(55,163)(56,164)(57,165)(58,166)(59,167)(60,168)(61,227)(62,228)(63,217)(64,218)(65,219)(66,220)(67,221)(68,222)(69,223)(70,224)(71,225)(72,226)(73,216)(74,205)(75,206)(76,207)(77,208)(78,209)(79,210)(80,211)(81,212)(82,213)(83,214)(84,215)(85,236)(86,237)(87,238)(88,239)(89,240)(90,229)(91,230)(92,231)(93,232)(94,233)(95,234)(96,235)(97,188)(98,189)(99,190)(100,191)(101,192)(102,181)(103,182)(104,183)(105,184)(106,185)(107,186)(108,187)(109,174)(110,175)(111,176)(112,177)(113,178)(114,179)(115,180)(116,169)(117,170)(118,171)(119,172)(120,173), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,61)(10,62)(11,63)(12,64)(13,129)(14,130)(15,131)(16,132)(17,121)(18,122)(19,123)(20,124)(21,125)(22,126)(23,127)(24,128)(25,176)(26,177)(27,178)(28,179)(29,180)(30,169)(31,170)(32,171)(33,172)(34,173)(35,174)(36,175)(37,204)(38,193)(39,194)(40,195)(41,196)(42,197)(43,198)(44,199)(45,200)(46,201)(47,202)(48,203)(49,105)(50,106)(51,107)(52,108)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(73,237)(74,238)(75,239)(76,240)(77,229)(78,230)(79,231)(80,232)(81,233)(82,234)(83,235)(84,236)(85,215)(86,216)(87,205)(88,206)(89,207)(90,208)(91,209)(92,210)(93,211)(94,212)(95,213)(96,214)(109,151)(110,152)(111,153)(112,154)(113,155)(114,156)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150)(133,227)(134,228)(135,217)(136,218)(137,219)(138,220)(139,221)(140,222)(141,223)(142,224)(143,225)(144,226)(157,184)(158,185)(159,186)(160,187)(161,188)(162,189)(163,190)(164,191)(165,192)(166,181)(167,182)(168,183), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200,201,202,203,204)(205,206,207,208,209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224,225,226,227,228)(229,230,231,232,233,234,235,236,237,238,239,240), (1,74,180,193,52)(2,75,169,194,53)(3,76,170,195,54)(4,77,171,196,55)(5,78,172,197,56)(6,79,173,198,57)(7,80,174,199,58)(8,81,175,200,59)(9,82,176,201,60)(10,83,177,202,49)(11,84,178,203,50)(12,73,179,204,51)(13,167,144,212,110)(14,168,133,213,111)(15,157,134,214,112)(16,158,135,215,113)(17,159,136,216,114)(18,160,137,205,115)(19,161,138,206,116)(20,162,139,207,117)(21,163,140,208,118)(22,164,141,209,119)(23,165,142,210,120)(24,166,143,211,109)(25,46,104,61,234)(26,47,105,62,235)(27,48,106,63,236)(28,37,107,64,237)(29,38,108,65,238)(30,39,97,66,239)(31,40,98,67,240)(32,41,99,68,229)(33,42,100,69,230)(34,43,101,70,231)(35,44,102,71,232)(36,45,103,72,233)(85,155,132,185,217)(86,156,121,186,218)(87,145,122,187,219)(88,146,123,188,220)(89,147,124,189,221)(90,148,125,190,222)(91,149,126,191,223)(92,150,127,192,224)(93,151,128,181,225)(94,152,129,182,226)(95,153,130,183,227)(96,154,131,184,228), (1,187)(2,188)(3,189)(4,190)(5,191)(6,192)(7,181)(8,182)(9,183)(10,184)(11,185)(12,186)(13,233)(14,234)(15,235)(16,236)(17,237)(18,238)(19,239)(20,240)(21,229)(22,230)(23,231)(24,232)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,109)(36,110)(37,216)(38,205)(39,206)(40,207)(41,208)(42,209)(43,210)(44,211)(45,212)(46,213)(47,214)(48,215)(49,228)(50,217)(51,218)(52,219)(53,220)(54,221)(55,222)(56,223)(57,224)(58,225)(59,226)(60,227)(61,168)(62,157)(63,158)(64,159)(65,160)(66,161)(67,162)(68,163)(69,164)(70,165)(71,166)(72,167)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,203)(86,204)(87,193)(88,194)(89,195)(90,196)(91,197)(92,198)(93,199)(94,200)(95,201)(96,202)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,133)(105,134)(106,135)(107,136)(108,137)(145,180)(146,169)(147,170)(148,171)(149,172)(150,173)(151,174)(152,175)(153,176)(154,177)(155,178)(156,179) );
G=PermutationGroup([(1,137),(2,138),(3,139),(4,140),(5,141),(6,142),(7,143),(8,144),(9,133),(10,134),(11,135),(12,136),(13,200),(14,201),(15,202),(16,203),(17,204),(18,193),(19,194),(20,195),(21,196),(22,197),(23,198),(24,199),(25,153),(26,154),(27,155),(28,156),(29,145),(30,146),(31,147),(32,148),(33,149),(34,150),(35,151),(36,152),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,157),(50,158),(51,159),(52,160),(53,161),(54,162),(55,163),(56,164),(57,165),(58,166),(59,167),(60,168),(61,227),(62,228),(63,217),(64,218),(65,219),(66,220),(67,221),(68,222),(69,223),(70,224),(71,225),(72,226),(73,216),(74,205),(75,206),(76,207),(77,208),(78,209),(79,210),(80,211),(81,212),(82,213),(83,214),(84,215),(85,236),(86,237),(87,238),(88,239),(89,240),(90,229),(91,230),(92,231),(93,232),(94,233),(95,234),(96,235),(97,188),(98,189),(99,190),(100,191),(101,192),(102,181),(103,182),(104,183),(105,184),(106,185),(107,186),(108,187),(109,174),(110,175),(111,176),(112,177),(113,178),(114,179),(115,180),(116,169),(117,170),(118,171),(119,172),(120,173)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,61),(10,62),(11,63),(12,64),(13,129),(14,130),(15,131),(16,132),(17,121),(18,122),(19,123),(20,124),(21,125),(22,126),(23,127),(24,128),(25,176),(26,177),(27,178),(28,179),(29,180),(30,169),(31,170),(32,171),(33,172),(34,173),(35,174),(36,175),(37,204),(38,193),(39,194),(40,195),(41,196),(42,197),(43,198),(44,199),(45,200),(46,201),(47,202),(48,203),(49,105),(50,106),(51,107),(52,108),(53,97),(54,98),(55,99),(56,100),(57,101),(58,102),(59,103),(60,104),(73,237),(74,238),(75,239),(76,240),(77,229),(78,230),(79,231),(80,232),(81,233),(82,234),(83,235),(84,236),(85,215),(86,216),(87,205),(88,206),(89,207),(90,208),(91,209),(92,210),(93,211),(94,212),(95,213),(96,214),(109,151),(110,152),(111,153),(112,154),(113,155),(114,156),(115,145),(116,146),(117,147),(118,148),(119,149),(120,150),(133,227),(134,228),(135,217),(136,218),(137,219),(138,220),(139,221),(140,222),(141,223),(142,224),(143,225),(144,226),(157,184),(158,185),(159,186),(160,187),(161,188),(162,189),(163,190),(164,191),(165,192),(166,181),(167,182),(168,183)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200,201,202,203,204),(205,206,207,208,209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224,225,226,227,228),(229,230,231,232,233,234,235,236,237,238,239,240)], [(1,74,180,193,52),(2,75,169,194,53),(3,76,170,195,54),(4,77,171,196,55),(5,78,172,197,56),(6,79,173,198,57),(7,80,174,199,58),(8,81,175,200,59),(9,82,176,201,60),(10,83,177,202,49),(11,84,178,203,50),(12,73,179,204,51),(13,167,144,212,110),(14,168,133,213,111),(15,157,134,214,112),(16,158,135,215,113),(17,159,136,216,114),(18,160,137,205,115),(19,161,138,206,116),(20,162,139,207,117),(21,163,140,208,118),(22,164,141,209,119),(23,165,142,210,120),(24,166,143,211,109),(25,46,104,61,234),(26,47,105,62,235),(27,48,106,63,236),(28,37,107,64,237),(29,38,108,65,238),(30,39,97,66,239),(31,40,98,67,240),(32,41,99,68,229),(33,42,100,69,230),(34,43,101,70,231),(35,44,102,71,232),(36,45,103,72,233),(85,155,132,185,217),(86,156,121,186,218),(87,145,122,187,219),(88,146,123,188,220),(89,147,124,189,221),(90,148,125,190,222),(91,149,126,191,223),(92,150,127,192,224),(93,151,128,181,225),(94,152,129,182,226),(95,153,130,183,227),(96,154,131,184,228)], [(1,187),(2,188),(3,189),(4,190),(5,191),(6,192),(7,181),(8,182),(9,183),(10,184),(11,185),(12,186),(13,233),(14,234),(15,235),(16,236),(17,237),(18,238),(19,239),(20,240),(21,229),(22,230),(23,231),(24,232),(25,111),(26,112),(27,113),(28,114),(29,115),(30,116),(31,117),(32,118),(33,119),(34,120),(35,109),(36,110),(37,216),(38,205),(39,206),(40,207),(41,208),(42,209),(43,210),(44,211),(45,212),(46,213),(47,214),(48,215),(49,228),(50,217),(51,218),(52,219),(53,220),(54,221),(55,222),(56,223),(57,224),(58,225),(59,226),(60,227),(61,168),(62,157),(63,158),(64,159),(65,160),(66,161),(67,162),(68,163),(69,164),(70,165),(71,166),(72,167),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,127),(80,128),(81,129),(82,130),(83,131),(84,132),(85,203),(86,204),(87,193),(88,194),(89,195),(90,196),(91,197),(92,198),(93,199),(94,200),(95,201),(96,202),(97,138),(98,139),(99,140),(100,141),(101,142),(102,143),(103,144),(104,133),(105,134),(106,135),(107,136),(108,137),(145,180),(146,169),(147,170),(148,171),(149,172),(150,173),(151,174),(152,175),(153,176),(154,177),(155,178),(156,179)])
Matrix representation ►G ⊆ GL4(𝔽61) generated by
60 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
60 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 21 | 0 |
0 | 0 | 0 | 21 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 60 | 43 |
60 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60],[60,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,60,0,0,0,0,21,0,0,0,0,21],[1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,43],[60,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;
192 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3A | 3B | 4A | ··· | 4H | 4I | ··· | 4P | 5A | 5B | 6A | ··· | 6N | 6O | ··· | 6AD | 10A | ··· | 10N | 12A | ··· | 12P | 12Q | ··· | 12AF | 15A | 15B | 15C | 15D | 20A | ··· | 20P | 30A | ··· | 30AB | 60A | ··· | 60AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 6 | ··· | 6 | 6 | ··· | 6 | 10 | ··· | 10 | 12 | ··· | 12 | 12 | ··· | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 1 | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | 2 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | ··· | 2 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
192 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C6 | C12 | D5 | D10 | D10 | C3×D5 | C4×D5 | C6×D5 | C6×D5 | D5×C12 |
kernel | D5×C22×C12 | D5×C2×C12 | C2×C6×Dic5 | C22×C60 | D5×C22×C6 | D5×C22×C4 | D5×C2×C6 | C2×C4×D5 | C22×Dic5 | C22×C20 | C23×D5 | C22×D5 | C22×C12 | C2×C12 | C22×C6 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 2 | 16 | 24 | 2 | 2 | 2 | 32 | 2 | 12 | 2 | 4 | 16 | 24 | 4 | 32 |
In GAP, Magma, Sage, TeX
D_5\times C_2^2\times C_{12}
% in TeX
G:=Group("D5xC2^2xC12");
// GroupNames label
G:=SmallGroup(480,1136);
// by ID
G=gap.SmallGroup(480,1136);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-5,192,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^12=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations